Crop Monitoring in Ireland with SAR to Quantify
Agricultural Stability and Climate Resilience

tJemima O’Farrell'*3, Dualta O Fionnagdin''3, Ross Trearty''3, Yared Tessema?'3, Michael Geever'"3, Patricia Codyre?'?, Charles Spillane?'3, Aaron Golden'"3

'School of Natural Sciences, 2School of Biological & Chemical Sciences, *Ryan Institute College of Science and Engineering, University of Galway, Galway, Ireland, H91 TK33

Ayerage Clhavd Preaabiity in Training &01 2019

Motivation

Given Ireland’s rapidly changing climate’, it is difficult to monitor crops using
traditional optical-based remote sensing methods due to the extensive
number of overcast days. Increasing trends in the frequency and quantity of
rainfall indicate that cloud-cover will continue impact the utility of optical
agricultural monitoring in Ireland. Sentinel-1 can provide information on crop
production status at a higher temporal resolution than traditional optical

instruments like Sentinel-2, providing up to 61 acquisitions annually. Fig 1A. Median Composite of EVI over the Area of Interest, 2019
Fig 1B. Plot of Sentinel-2 Cloud Probability, 2019
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Finally, An XGBoost Regression Model was trained and validated
Fig 2. Flowchart of methodology implementation, including preprocessing of Sentinel-1 using 10-fold cross validation in Python.
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Fig 3. Selection of images from SAR-VI model predicting on unseen
2020 data, where 0-1 represents predicted EVI as a proxy for crop Fig 5. Time-series of SAR-VI vs. EVI averaged over one
growth. Images represent the start of season, peak and end of season Fiold
for the most common crop in the region, Spring Barley.
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